Classification of Rotated and Scaled Textured Images Using Spectral Moments
نویسندگان
چکیده
This paper describes a classification method for rotated and scaled textured images using invariant parameters based on spectral-moments. Although it is well known that rotation invariants can be derived from moments of grey-level images, the use is limited to binary images because of its computational unstableness. In order to obtain computationally stable moments, we use power spectrum instead of the grey levels to compute moments and adjust an integral region to scale change. Rotation and scale invariants are obtained as the ratio of the rotation invariants on the basis of a spectral-moment property with respect to scale. The effectiveness of the approach is illustrated through experiments on natural textures from the Brodatz album. The stability of the invariants with respect to change of scale is discussed theoretically and confirmed experimentally.
منابع مشابه
On Pattern Classification Using Statistical Moments
Selecting appropriate feature extraction method is absolutely one of the most important factors to archive high classification performance in pattern recognition systems. Among different feature extraction methods proposed for pattern recognition, statistical moments seem to be so promising. Whereas theoretical comparison of the moments is too complicated, in this paper, an experimental evaluat...
متن کاملAutomated Color Logo Recognition System based on Shape and Color Features
This paper proposes an automated system for rotation and scale invariant color logo recognition. Colored logo images are recognized using one shape feature namely Moments Invariant and a color feature namely Color Moments. Shape of the logo is modeled using the first two central normalized Hu's invariant moments while color is modeled using the mean, standard deviation, skewness and kurtos...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کامل3D Classification of Urban Features Based on Integration of Structural and Spectral Information from UAV Imagery
Three-dimensional classification of urban features is one of the important tools for urban management and the basis of many analyzes in photogrammetry and remote sensing. Therefore, it is applied in many applications such as planning, urban management and disaster management. In this study, dense point clouds extracted from dense image matching is applied for classification in urban areas. Appl...
متن کاملShape-Based Image Retrieval Applied to Trademark Images
We propose a new shape-based, query-by-example, image database retrieval method that is able to match a query image to one of the images in the database, based on a whole or partial match. The proposed method has two key components: the architecture of the retrieval and the features used. Both play a role in the overall retrieval efficacy. The proposed architecture is based on the analysis of c...
متن کامل